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On the existence of non-radiating frequencies in the 
radiation from a stochastic current distribution 

B J Hoendersi and H P Baltes 
Zentrale Forschung und Entwicklung, Landis and Cyr Zug AG,  CH-6301 Zug, Switzerland 

Received 13 September 1978, in final form 18 July 1979 

Abstract. The theory of non-radiating stochastic current distributions is developed within 
the framework of first-order coherence theory of electromagnetic fields. Necessary and 
sufficient conditions for non-radiating current correlations are derived. A class of non- 
radiating stochastic current distributions is constructed. In contrast to these results, it can be 
shown that any non-trivial field correlation given on an arbitrary surface radiates. 

1. Introduction 

It is well known (Sommerfeld 1904,1905, Herglotz 1908, Ehrenfest 1910, Schott 1933, 
Goedecke 1964, Erber and Prastein 1970, Devaney and Wolf 1973, Cohen and 
Bleistein 1977) that oscillating charge current distributions with finite support may not 
radiate, but rather lead to a static field outside the distribution. 

Much of the older work on non-radiating current distributions was stimulated by 
problems connected with extended electron models, models for elementary particles, or 
electromagnetic self-force and radiation reaction (see e.g. Jackson (1974) and Hoen- 
ders (1978) for a review). 

The current renewed interest in non-radiating sources is motivated by inverse 
scattering and source reconstruction problems, and in particular with the question of 
the uniqueness of the reconstruction (see Hoenders (1978) for a review): in general, 
current distributions cannot be determined uniquely from their radiation pattern since 
non-radiating distributions exist. 

Such distributions can always be added to the source without changing the radiation 
pattern. In other words, a current distribution can only be determined up to its 
non-radiating part. 

A famous example of a non-radiating distribution has been constructed by Schott 
(1933) who considered a surface charge distribution e, uniformly distributed at the 
surface of a sphere with radius a. In Schott’s own words: When the centre of a 
uniformly and rigidly charged sphere, with charge e and radius a, in purely translatory 
motion, describes a closed orbit periodically in a time 2a/cj, where j is any integer, the 
electromagnetic field at every point is a static field. The electrostatic potential of this 
field is the same as that due to a charge e distributed along the orbit of the centre with a 
linear density varying inversely as the velocity of the centre, which is the same as that of 
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every point of the sphere, and the magnetic field is the same as that due to a uniform 
steady current of strength je /2a flowing round the orbit of the centre in the direction of 
its motion. 

A general class of non-radiating current charge distributions, which allow a simple 
physical interpretation, has been derived by Ehrenfest (1910). Let 4 be a solution of 
the Laplace equation in a domain a which is the exterior of a bounded domain b, and 
suppose that q5 is time-independent in a, but time-dependent in b, that V 2 4  # 0 in b, and 
that both 4 and its normal derivative are continuous across the boundary of a and b. 
Then, if 

E = -Vq5 V2q5 = p  j = p u  (1.1) 

v =  v24 everywhere in a fl b 

we observe that the field (1.1) is a solution to Maxwell’s equations if 

dH/at = o 

V X H = O  everywhere in a. (1.2) 

and 

Therefore, the field generated by the current charge distribution defined in (1.1) is static 
outside the domain a and is therefore non-radiating. (This field is also the unique 
solution to Maxwell’s equations if we impose the vectorial form of Sommerfeld’s 
radiation condition.) 

Equation (1.1) shows that for this, most general type of non-radiating current charge 
distributions, conjectured by Ehrenfest, the convection current j = pv is cancelled by the 
displacement current. 

It is both important and interesting to notice from this procedure that neither 
symmetries, nor the vanishing of multipole moments, etc, are needed for the construction 
of a ,ion-radiating distribution, and that the absence of a time-dependent field outside 
the distribution is due to a complicated interference mechanism. 

Another example connected with non-radiating sources has been constructed by 
Kay and Moses (1956) (see also Hoenders (1978)). They showed that it is possible to 
construct a plane variable index of refraction n 2 ( x ) ,  extending from -CO to +CO, and 
approaching unity at -CO and +CO such that a plane wave at a fixed frequency and 
polarisation incident at all angles from -CO will be transmitted to +CO without reflection. 
To be more specific, let 

$(x, y ,  z )  = exp(ik,y +ik,z)u(x) 

(V2+ k 2 n 2 ( x ) ) $ ( x ,  y ,  t) = 0. 

E = (k; + k : )  and V ( X )  = k2(1 - n 2 ( x ) ) ,  (1.5) 

(d2/dX2 + E  - V ( X ) ) U ( X )  = 0 

(1.3) 

be a solution of 

(1.4) 

Then, if 

combination of equations (1.3), (1.4) and (1.5) leads to 

-CO < x < +CO. (1.6) 
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Kay and Moses showed the existence of an infinite number of continuous and every- 
where negative ’potentials’ V(x) such that 

u (x) - exp(iJE x)  ifx+-co 

u ( x ) - ~ ( E )  exp(iJEx)  i f x + + W  (1.7) 

This result, namely equations (1.3), (1.4), and (1.7), can be interpreted in terms of 
non-radiating current distributions if we use a result obtained by Bromwich (1919). 
The field vectors E and B of an arbitrary electromagnetic field in an inhomogeneous 
isotropic medium without free currents and charges can be derived by differentiation 
from two potentials, satisfying equation (1.4). 

Therefore, the result (1.7), together with equations (1.3) and (1.4), shows that the 
induced currents and charges in the medium are not radiating. 

Moreover, it is readily observed that equation (1.6) denotes the one-dimensional 
time-independent Schrodinger equation. We therefore come to the following quan- 
tum-mechanical interpretation of equations (1.3)-(1.7): it is possible to construct an 
infinity of potentials V(x), extending from --a3 to fa such that every incoming plane 
wave with an arbitrary angle of incidence will be transmitted without reflection. 

Though the pertinent theory has been well developed for deterministic current 
distributions and sufficient and necessary conditions have been established for deter- 
ministic sources to be non-radiating, no such results are known for the case of stochastic 
sources. In this paper we develop the theory of non-radiating stochastic currents. In 9 3 
we construct a class of non-radiating (first-order) current correlations. In 8 4 we derive 
a criterion which allows us to check whether a given source correlation is non-radiating. 
In 8 5 we show that non-trivial field correlations which are prescribed on an arbitrary 
surface always radiate. Since non-radiating coherent (deterministic) sources exist, one 
may presume that the related interference effect also applies to partially coherent 
(stochastic) sources of finite, but non-zero, coherence area such as black body radiation. 
These effects would be absent only in the hypothetical case of zero coherence area. 

2. Summary of electrodynamic relations 

In this paper we focus our attention on spatial fluctuations. We thus consider only one 
frequency component of the pertinent correlation functions. Technically this is 
equivalent to considering spatially stochastic, but time harmonic fields throughout this 
section and 09 3-5 of this paper. In 9 6 we touch upon the generalisation of our results 
to more general time-dependent sources. 

The following classical relations are used in our calculations. From Maxwell’s 
equation in MKS units 

V % H = j -ikD 

V x E = ikB V.B=O E(r,  t )  = E(r) exp(-iwt) (2.1) 

w = ck 

V . D = p  H(r ,  t )  = H ( r )  exp(-iwt) 

and the material equations 

D = E E  B = p H  (2.2) 
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where E and p are constants, one has the vectorial wave equations 

V x V x E - k2Ep.E = ikp j  

V x V x H - k2EpH = V x j, 
The related tensorial Green function ie defined by 

%(r, r’; k)  = ( U +  k-2VV)G(r, r ’ ;  k)  
where 

exp(iklr-r’l) 
/ r  - r’j 

G(r, r ’ ;  k)  = 9 

(2.4) 

1 denotes the unit dyadic, and VV is a dyadic differential operator, is a solution of the 
equation: 

(V x V x - k *) %(r, r’k) = 18 ( r  - r ’ ) .  (2.6) 

The unique solutions to equations (2.3) satisfying the vectorial form of Sommerfeld’s 
radiation condition are obtained from equation (2.6) and the tensor analogue of 
Green’s theorem for well-behaved vectors P and dyadics 2, namely: 

I,(V x V x P . 2  -P.V x V x 9} d7 = { ( n  x V x P) .2 + ( n  xP) .  (V x 9)} d c  I, (2.7) 

with V denoting a three-dimensional domain bounded by the surface c. This relation is 
easily obtained by applying the corresponding vector formula (Morse and Feshbach 
1953) to every column vector of the tensor 2 (see appendix 2). 

If the current j is confined to a volume 7, equations (2.3), (2.6) and (2.7) with 2 = ’3 
and P = E or B and Sommerfeld’s vectorial radiation condition, by virtue of which the 
surface integrals tend to zero if c tends to infinity, lead to: 

E ( r )  = p ie(r, r’;  k).ikj(r’) dr’  1. 
1. 
I, 

B ( r )  = p ie(r, r ‘ ;  k)  . V ’ x  j(r’) dr ’ .  

Integration by parts of equations (2.8) and (2.9) leads to 

E ( r )  = ikp G(r, r ‘ ;  k)[l+ k-2V’V‘]. j(r’) dr’ 

and 

G(r, r‘;  k)[U+ k-2V’V’].V’~ j(r’) dr‘. 

(2.9) 

(2.10) 

(2.11) 

3. General construction of a non-radiating stochastic source 

Instead of the above deterministic field variables we now consider the corresponding 
correlations. Let L ( r )  denote the six vector with components E ( r )  and B ( r )  and 
consider the first-order spatial correlation tensor 
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for positions rl and r2 outside the domain T ,  where the brackets ( .  . . )  denote an 
ensemble average and L(rl)L*(r2)  has to be read as the direct or dyadic product. The 
source of 9 ( r l ,  r2) is a stochastic current distribution, confined to a volume T ,  defined by 
the current correlation tensor 

(3.2) 

Physical examples are currents in a turbulent plasma or the currents induced by the 
incident field in a scattering experiment. We recall that the ensemble average can be 
defined using a statistical operator p and reading the electromagnetic quantities as field 
operators, namely (L(r l )L*(r2) )  = Tr{pL(rl)L(r2)}, etc. Examples for p are the 
coherent or Glauber state, which would bring us back to the deterministic case, and 
thermal equilibrium. We have not to specify p in the following theory. 

B h ,  rd = ( j h ) j * ( r d  -Tr(pjj*). 

A stochastic current distribution is called non-radiating if 

9 h ,  r2) = 0 if rl and r2 i? r. (3.3) 
As will be shown in Q 4, the definition (3.3) can be relaxed as follows. An equivalent 
condition for (3.3) is that the tensor 9 ( r l ,  r2) vanishes at positions rl and r2 in the far 
zone. 

In the following we construct a simple example of a class of non-radiating stochastic 
current distributions. Suppose that the tensor le(rl, r2) is a four times continuously 
differentiable function of rl and r2, such that 

R(r1, rd = 0 if rl and r2 i? T.  (3.4) 

Consider the current correlation tensor 

Bh(r1, r2) (j(h).i*(rZ))h 
defined by 

A h ,  r2) = CV: + k2)(v:+ k2)k(r l ,  r2). 
Combination of equation (2.10), (3.5) and (3.6) leads to 

(E(rl)E*(rz))  

= G ( r l ,  ri ; k)G*(r2 ,  r; ; k)(U+ k-’V;V;)(l + k-2V;V;) 

x(V:+k2)(V:+k2) .R(r’ l ,  r ; )  dri, dr;. 

Using Green’s theorem, from equation (3.7) we obtain 

(E(r1)E*(rzN 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

where 
R ( r l ,  r2) = (U + k-2V1V1)(I + K ~ v ~ v ~ )  .R(rl, ~ 2 )  (3.9) 

and where a denotes a surface enclosing both the volume and the points rl and r2. 
However, equations (3.4), (3.8) and (3.9) show that (E(r l )E*(r2) )  I s  zero if both r l  and 
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r2 are positions outside T.  It can be shown in the same way that the correlation tensors 
(E(r l )H*(r2) )  and (H(r l )H*(r2 ) )  are zero if rl and r2& r. Thus we have derived the 
result that the correlation tensor 9(rl ,  r2) (3.1) generated by the current correlations 
(3.2) is identically zero at any position rl and r2 outside the source domain T.  In 
particular we learn that the average energy density 

(V(r )>  - Tr{(W)E*(r ) )  + (H(r )H*(r ) ) )  (3.10) 

as well as the average Poynting vector 

( S ( r ) )  - W r )  x H * ( r ) )  (3.11) 

vanish everywhere outside the source domain r. Thus there is no energy flow through 
any closed surface which does not intersect the domain T. 

We have shown above that equations (3.4) and (3.6) constitute a recipe for obtaining 
non-radiating stochastic current correlations. Under appropriate differentiability 
conditions one can also show that a given non-radiating stochastic source correlation 
can always be written in the form (3.4) and (3.6). To this end we have to show that the 
special type of construction of a non-radiating distribution considered in § 3 does 
always apply to a given non-radiating distribution. This is easily achieved by choosing 
as R ( r l ,  r2) of the construction (3.6) the tensor 

h(r l ,  r2) = ( E ( r d E V 2 ) ) .  (3.12) 

The representation (3.6) is therefore both sufficient and necessary for vanishing field 
correlations outside the support of the current distribution. 

4. A necessary and sufficient condition for non-radiating sources 

Let us now derive a more tangible necessary and sufficient condition for non-radiating 
current correlations. To this end, we replace the Green function in equations (2.10) and 
(2.11) by the far-zone approximation 

G(rl, r2;  k )  = r-' exp(ikr) exp(-iks.r) (4.1) 

where s = r / r  with r = Irl denotes the unit vector in the direction of the observation. The 
corresponding far-field correlation tensor becomes, on using (2.10), (2.1 1) and (4.1), 
for large values of lrli and irzl: 

where 
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etc. The term ( ( U - s l s l ) , j ( r ; ) ( U - s 2 ~ 2 ) . j * ( r ; ) )  arises from the correlations 
(E(r l )E*(r2 ) ) ,  whereas the term ((U-slsl).j(r;)(U-s~s2).(ks2 x j * ( r ; ) ) )  arisesfrom the 
correlations (E(r1)B*(r2) ) ,  etc. 

Let now , f(ks) denote the Fourier transform of the stochastic current j ( r ) ,  and let us 
perform the integrations over i-1 and r2 in equation (4.2). We then observe that the 
correlations generated by (E(r l )E*(r2 ) )  can only vanish if 

( p ( k s p ( k s 2 ) )  = 0 (4.4) 

j3(ks) = s x s x;(ks) .  

for all directions s1 and s2, where, by definition, 

(4.5) 

Recalling that 

(u - s l s l ) . ( s , x j ik s l ) )=  --SlXSlXS/ x j ( k s l ) = s / x j i k s l ) ,  1 = 1, 2, (4.6) 

we observe that all the other correlations occuring in equation (4.2) like 

( ~ ( r l ) ~ * ( r 2 ) )  = ( j T ( ~ s 2  x jT(ks2 ) )  (4.7) 

can only vanish if (4.4) holds true. 
We now show that the condition (4.4) is also sufficient, i.e. current correlations 

obeying equation (4.4) are non-radiating (see definition (3.3)). To this end we rewrite 
equation (4.4) using Bauer's expansion (Watson 1966) 

1=0 m=-/ 

where j l  denotes the spherical Bessel function of order 1 ;  a, p denote the polar angles of 
the vector s, and 8, q5 those of r. Inserting the expansion (4.8) into condition (4.4) and 
using the linear independence of the spherical harmonics Y;", we obtain an equivalent 
discrete set of conditions, namely: 

for all 1, 1', m, m', where 

X ( ' ) ( r i ,  r ; )  = ?C(ri, r ;  ; ik-'V;, K 'V; ) .  (4.10) 

Multiplying equation (4.9) by 

Y W 1 ,  q5d YT' * ( e 2 ,  q52)hj1'(krl)hjf)*(kr2) (4.11) 

with the spherical Hankel function of the first kind h!'), summing over all 1, l ' ,  m, m', and 
using the expansion ( r ' <  r )  

= 2ik 2 'f Y;"(8, q5)Y;"" (e', q5')j[(kr')hi1)(kr) 
exp(ik/r - r ' / )  

jr - r'/ 1=0 m = - l  
(4.12) 

we find that the field correlation tensor (3.1) vanishes everywhere outside the domain 7. 
We thus have shown that the far-zone condition (4.4) is sufficient for the source 
correlation to be non-radiating. We mention that the non-radiating current correlation 



1002 B J Hoenders and H P Baltes 

tensor (3.6) fulfils this condition, as can be seen by inspection. In appendix 1 we present 
a generalisation of the condition (4.4) together with an alternative derivation which 
avoids the use of the expansions (4.8) and (4.12). 

5. The non-existence of non-radiating surface field correlations 

In the previous sections we have shown that non-trivial non-radiating three-dimen- 
sional stochastic current distributions do exist. Let us now discuss a related two- 
dimensional problem: is it possible to construct field correlations prescribed on some 
surface which do not radiate? The non-existence of such surface correlations is 
immediately deduced from the theory presented in Q 4 .  The correlations of the 
tangential components of E and B on the boundary surface CT of some domain T ,  

together with the Sommerfeld radiation conditions for (3. l), uniquely determine the 
field correlations outside the domain. As we show below, the field correlations outside T 

vanish if and only if the boundary correlations vanish almost everywhere on (T, i.e. 
non-trivial non-radiating boundary correlations do not exist. 

In order to prove this statement, we recall that the EMF in free space can be derived 
from the solutions $(r ,  t )  of the scalar wave equation (Wolf and Green 1953). As 
before we consider time harmonic fields, i.e. $(r,  t )  = exp(-iwt)$(r). To every pres- 
cribed boundary distribution d ( a )  = $ ( r ) I r z m  with U on the boundary surface there 
exists a unique equivalent stratum p ( a )  such that the unique solution of the exterior 
Dirichlet problem satisfying Sommerfeld's radiation condition at infinity reads 

a 
p ( ~ ) - G ( r ,  U ;  k)  d u  = $ ( r ) .  I, an 

For simplicity we have assumed here that k is not an eigenvalue of the corresponding 
interior problem. (If k is an eigenvalue, one has a slightly more complicated represen- 
tation of the field (see e.g. Honl eta1 (1961) and references therein), to which, however, 
the same analysis applies.) The above representation is easily transferred to the 
pertinent correlation ($( rl)$*( r2) ) ,  (d ( crl)d* (az)), and ( p  ( u1)p * ( ~ 2 ) ) .  

Here we can start from a slightly more relaxed definition of non-radiating cor- 
relations (d(crl)d*((a2)),  namely that the radial part of the average Poynting vector 
decreases more rapidly than r-'. The Poynting vector is known to be proportional to 
Im($V$*) (Wolf and Green 1953). Hence, from equations (4.1) and (5.1) we learn that 
non-radiating boundary correlations ( d ( a l ) d * ( a z ) >  imply 

j u j u d m  dU2(cL(m)p(Ud) e x p [ i k ( a l . s l - a ~ . s ~ ) I = O  (5.2) 

for any sl, s2, where (+I, u2 E (T. 

(5.2) can be cast into 
Following the procedure of 8 4, by virtue of equations (4.6) and (4.10), equation 

for all rl and r2 outside the domain 7. From equations (5.1) and (5.3) we conclude that 
($(r l )$*(r2) )  as well as the related field correlations vanish almost everywhere outside 
T. Hence, by continuity, the boundary field correlations, e .g . (E(al)E*(a2)) ,  also 
vanish. 
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6. Discussion and generalisation 

In this paper we have developed the theory of non-radiating sources of any degree of 
(first-order) coherence. The main results are the following. 

(i) The construction of non-radiating current correlations as described by equa- 
tions (3.4)-(3.6). 

(ii) The sufficient and necessary condition (4.4) for non-radiating current cor- 
relations. 

(iii) The non-existence of non-radiating field correlations prescribed on a surface as 
shown in § 5.  

Let us briefly discuss the result (ii). The necessary and sufficient condition 

(7(ksl)7*(ks2))  = 0 for all directions sl, s 2  

is the generalisation of the corresponding condition for deterministic current dis- 
tributions, namely P(ksl)  = 0 for all directions sl, established by Erber and Prastein 
(1970), Devaney and Wolf (1973) and rederived by Cohen and Bleistein (1977). 

In this paper we have considered the possibility of non-radiating current cor- 
relations within the framework of first-order coherence theory. The generalisation to 
nth-order current correlations appears to be straightforward. We conjecture that the 
corresponding condition reads 

(6.1) (JT(ks1) . . . jT (ks , )P*(ks ,+1) .  . . JT"(ks2,)) = 0. 

Equivalent to the condition (4.4) (with A1.4) is the set of conditions 

IT drl dr2jdkrMkr2)  Y;"" (01 ,41)  Y?' (02, 42)(jT(r1)jT*(r2)) = 0 (6.2) 

for all 1, l ' ,  m, m'. These conditions lead to the interpretation that a stochastic current 
distribution is non-radiating if and only if the projections of the tensor ( jT(rl)jT*(r2)) on 
the Hilbert space vectorsjr(krl)j,,(kr2) Y;"" (el, 41) Yiy' (e2, 42) vanish for all I ,  I ' ,  m, m'. 
We thus find the following additional procedure for constructing non-radiating sto- 
chastic current distributions: consider an arbitrary tensor 2 ( r l ,  r2) and subtract its 
projections along the abovementioned Hilbert space vectors. The resulting tensor 
describes a non-radiating source. With respect to the related inverse source problem 
we learn that only the projection of ( jT(rl)jT*(r2)) in the Hilbert space described above 
can be observed. 

So far we have considered only stochastic current distributions which depend 
harmonically on time. However, non-radiating current correlations with a more 
general time dependence can also be constructed following a procedure similar to that 
outlined in § 3. Assume that the stochastic current j ( r ,  t )  has a temporal Fourier 
decomposition whose spectrum contains a continuous part j ( r ,  k,) as well as a discrete 
part f(r, kd), namely: 

j ( r ,  t )  = J dkci(r ;  k,) exp(-ik,ct) +I j ( r ;  kd) exp(-ikdct). (6.3) 
d 

Equations (2.10), (2.1 1) and (3.3) show that the corresponding current correlation is 
non-radiating if 
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with kl ,  kZ denoting any of the wavenumbers k ,  or kd.  Consider now the class of current 
correlations defined as 

where R(r l ,  r2) denotes a function which is everywhere twice continuously differenti- 
able and which vanishes for rl  or r2 outside the source domain T. Following the same 
procedure as outlined in § 3 ,  we can show that the correlations (6.5) fulfil the condition 
(6.4) and thus describe a class of non-radiating sources. 
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Appendix 1 

The connection between the vanishing of the field correlation tensor in the far zone and 
everywhere outside the domain 7 studied in § 4 can also be inferred from the following 
consideration. We notice that the relation 

(Al .  1) 

is valid for solutions v ( r j )  of the scalar Helmholtz equations 

(V: + k2)v ( r j )  = 0, j = 1, 2, (A1.2) 

with rj in the domain T bounded by the surface U. Consider, for example, the 
electric-field tensor (E(r l )E*(r2) )  with E(r,)  as given by equation (2.10). The vanishing 
of the far-field correlation tensor implies 

with 

j T ( r l )  = (U+ k-’VV)j(rl)  (A1.4) 

and rj = lrj/. On the other hand, the asymptotic expansion (4.1) shows that we also have 
the asymptotic relations 

(A1.5) 
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a 
-(E(r1)E*(r2)) = o - 
an2 i rl;J 

(A1.6) 

(E(r l )E*(r2) )=o  - . (A1.7) d2 
anlan2 i rl:J 

Multiplying ( A l . l )  by ( jT(r1) jT*(r2) ) ,  integrating over r l  and r2,  using equations (A1.3) 
and (A1.5)-(A1.7) and assuming that via,) is bounded uniformly as w goes to infinity, 
we finally obtain 

as w goes to infinity. Invoking expansion (4.12), choosing for the modes v ( r j )  the set 
jl(krj).Y;"(6j, 4i), and summing over I ,  I ' ,  m, m', the left-hand side of (A1.3) is shown to 
vanish everywhere outside the domain T. Thus we have shown again that the vanishing 
of the field tensor in the far zone implies its vanishing everywhere outside the source 
domain. 

Moreover, (A1.8) is a generalisation of the condition (4.4) with respect to the basis 
{v (r i ) }  spanning the Hilbert space of the Helmholtz equations (A1.2). Our condition 
(4.4) is reproduced for the special choice v(rj) = exp(-ikrj, si). The generalisation 
(A1.8) of the crucial relation (4.4) is directly obtained from (4.4) by a transformation of 
the (assumedly) complete basis of the underlying Hilbert space. 

Appendix 2 

For the convenience of the reader, we rederive equation (2.7), following Jones (19641, 
from the vector analogue of Green's theorem for well-behaved vectors P and Q (Morse 
and Feshbach 1953): 

{(V X V  x P ) .  Q -P.(V X V  x Q)}  dT = { ( n  X V  x P ) .  Q +(n x P ) . ( V x  Q)} dT 

(A2.1) 

and the definitions for the in-product, curl, and out-product of a tensor 2 of the second 
rank and third order with a vector P :  

5" I, 

P x 22 = ( P  x Q,)i, + ( P  x Qy)iy + ( P  X Q,)iz 

V x 2 = (V x Q,)!, + (V x Qy)iy + (V x Q,)iZ 

(A2.2) 

(A2.3) 

p . 2  = ( P .  ix)Qx + (P. i y ) Q y  + ( P .  iz)QZ. (A2.4) 

The vectors i,, i, and i, are the unit vectors of a Cartesian coordinate system whereas 
the tensor 2 is written in dyadic notation in terms of the vectors Q,, Q,, QZ, or Q,, Qy, 

(A2.5) 

Taking for Q in equation (A2.1) Q,, Q, and Q, respectively, multiplication from the 
right with i,, i, and i, and addition of the resulting equation together with (A2.2) and 
(A2.3) leads to equation (2.7). 

Qz : 

2 = Q,i, + Qyi, + Q,i, = ixQx + iyQy + i,Qz. 
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